Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(Z)-2-Methylbuten-1-yl(aryl)iodonium trifluoromethanesulfonates containing electron-withdrawing groups on the aryl moiety

Robert J. Hinkle^a* and Robert McDonald^b

^aDepartment of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA, and ^bX-Ray Crystallography Laboratory, Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 Correspondence e-mail: rjhink@wm.edu

Received 4 July 2001 Accepted 8 November 2001 Online 31 January 2002

The crystal structures of [(Z)-2-methylbut-1-en-1-yl][4-(trifluoromethyl)phenyl]iodonium trifluoromethanesulfonate, $C_{12}H_{13}F_{3}I^{+}\cdot CF_{3}O_{3}S^{-}$, (I), (3,5-dichlorophenyl)[(Z)-2-methylbut-1-en-1-yl]iodonium trifluoromethanesulfonate, $C_{11}H_{12}$ - $Cl_{2}I^{+}\cdot CF_{3}O_{3}S^{-}$, (II), and bis{[3,5-bis(trifluoromethyl)phenyl]-[(Z)-2-methylbut-1-en-1-yl]iodonium} bis(trifluoromethanesulfonate) dichloromethane solvate, $2C_{13}H_{12}F_{6}I^{+}\cdot 2CF_{3}$ - $O_{3}S^{-}\cdot CH_{2}Cl_{2}$, (III), are described. Neither simple acyclic β,β -dialkyl-substituted alkenyl(aryl)idonium salts nor a series containing electron-deficient aryl rings have been described prior to this work. Compounds (I)–(III) were found to have distorted square-planar geometries, with each I atom interacting with two trifluoromethanesulfonate counter-ions.

Comment

We have recently shown that alkenyl(aryl)iodonium trifluoromethanesulfonate salts are highly reactive in fragmentation reactions and that an increase in the effective electronwithdrawing nature of the aryl ring increases reactivity (Hinkle & Thomas, 1997; Hinkle et al., 1999; McNeil et al., 2001). In this regard, alkenyl(aryl)iodonium salts are known to be highly reactive alkenyl halide equivalents. The phenyliodonio compounds react 10⁶ times faster in solvolysis experiments than the corresponding trifluoromethanesulfonates (Okuyama et al., 1995). This enhanced reactivity could potentially lead to a variety of new reactions. In fact, alkenyl(phenyl)iodonium tetrafluoroborates are known to be electrophiles in vinylic S_N2 substitution reactions (Okuyama et al., 1998, 2001). It was hoped that the increased reactivity of salts containing electron-withdrawing groups on the aromatic ring would lead to vinylic C-I bond elongation proportional to the reactivity. Herein, we report the structures of three different alkenyl(aryl)iodonium trifluoromethanesulfonates, the title compounds (I), (II) and (III), which show that the structures do not display this relationship.

The alkenyl(aryl)iodonium salts (I)–(III) were obtained by the reaction of 'iodonium transfer' reagents (Zhdankin *et al.*, 1993) with stereoisomerically pure (Z)-2-methylbut-1-en-1yltributylstannane and crystallized from CH_2Cl_2 by diffusion of pentane. Compound (I) provided monoclinic crystals, whereas both (II) and (III) were triclinic. The crystal of (I) (Fig. 1) contains a single dimeric unit, whereas crystals of (II) (Figs. 2 and 3) and (III) (Figs. 4 and 5) each contain two crystallographically independent dimeric units.

Previously, many iodonium salt structures have been described, including only the closest contact trifluoromethanesulfonate interaction, and have been designated as 'Tshaped' trigonal-bipyramidal geometries in which the vinylic moiety occupies an equatorial position relative to I, whereas the phenyl moiety and trifluoromethanesulfonate counter-ion are axial. If one considers only the interaction between the closest trifluoromethanesulfonate anion and the I atom, salts (I)–(III) reveal trigonal-bipyramidal geometries about the cationic I atom. In this sense, these salts are considered hypervalent 8-I-2 derivatives of iodine in the Martin–Arduengo formalism (Perkins *et al.*, 1980). This geometry is typical of 8-I-2 iodonium compounds, whether they are diaryl-, alkynyl- or alkenyl(aryl)iodonium salts (Varvoglis, 1992; Stang & Zhdankin, 1996).

Figure 1

A view of the cyclic unit of (I) formed from two iodonium and two trifluoromethanesulfonate ions. The cyclic unit is formed about the crystallographic inversion center $(0,0,\frac{1}{2})$ and primed atoms are related to unprimed atoms *via* this inversion center. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

organic compounds

Each unit cell for (I)–(III) contains two alkenyl(aryl)iodonium trifluoromethanesulfonates which are held in a dimeric arrangement about the I centers, giving the iodonium salts distorted square-planar geometries, rather than trigonal pyramidal as described above. The positively charged I atom interacts simultaneously with both trifluoromethanesulfonates, although contact is slightly closer to one of the two. For instance, in one dimer of compound (III), the distance between the I atom and the closest O atom of a trifluoro-

Figure 2

A view illustrating the interactions between the first crystallographically independent iodonium ion and the nearby trifluoromethanesulfonate ions in (II), and the cyclic unit thereby formed. Primed atoms are related to unprimed atoms *via* the crystallographic inversion center (0,0,0). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 3

A view illustrating the second crystallographically independent iodonium ion in (II), the nearby trifluoromethanesulfonate ions and the cyclic unit thereby formed. Double-primed atoms are related to unprimed atoms *via* the crystallographic inversion center $(\frac{1}{2},0,\frac{1}{2})$. Note that there are no interactions between this iodonium ion and the trifluoromethanesulfonate counter-ion associated with the other iodonium ion, or *vice versa* (Fig. 2). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. methanesulfonate anion is 2.767 (2) Å, whereas the distance to the other trifluoromethanesulfonate anion is 2.985 (3) Å. It should be noted that the other crystallographically independent iodonium dimer found for (III) contains more uniform iodine–trifluoromethanesulfonate distances. These bond lengths were found to be 2.893 (3) and 2.881 (2) Å. This variation in non-bonded distances is likely to be due to crystalpacking forces rather than any electronic effects. Squareplanar geometry has been described by several investigators

Figure 4

A view illustrating the interactions between the first crystallographically independent iodonium ion and the nearby trifluoromethanesulfonate ions in (III), and the cyclic unit thereby formed. Primed atoms are related to unprimed atoms *via* the crystallographic inversion center $(\frac{1}{22},0)$. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The dichloromethane solvate has been omitted for clarity.

A view illustrating the interactions between the second crystallographically independent iodonium ion and the nearby trifluoromethanesulfonate ions in (III), and the cyclic unit thereby formed. Doubleprimed atoms are related to unprimed atoms *via* the crystallographic inversion center $(0,\frac{1}{2},0)$. Note that there are no interactions between this iodonium ion and the trifluoromethanesulfonate counter-ions associated with the iodonium ion shown in Fig. 4. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The dichloromethane solvate has been omitted for clarity. (*e.g.* Gately *et al.*, 1992; Kasumov *et al.*, 1996, 1997) and was most recently observed in the case of a (2,2'-bithio-5-phenyl)(phenyl)iodonium trifluoromethanesulfonate (Tyk-winski *et al.*, 2000).

Despite the different electron-withdrawing substituents on the aryliodonio moiety, there is little structural difference within the covalently bonded moieties of the three compounds. The vinylic C–C bond lengths range from 1.293 (5) to 1.326 (5) Å for (III), with the corresponding values for (I) and (II) being in between. However, given the experimental uncertainties, the bond-length differences are inconsequential. The C–I bond lengths between the aryl rings and vinylic C atoms, at approximately 2.1 Å, are typical of those for iodonium salts (Varvoglis, 1992; Stang & Zhdankin, 1993).

The incorporation of increasingly electron-withdrawing aryliodonio moieties (Lowry & Richardson, 1987) results in another slight structural variation. The non-bonded distance between the I atom and the closest trifluoromethanesulfonate counter-ion is longest [2.909 (6) Å] in (I), the compound with the least electron-deficient aromatic ring. In one of the two dimeric units of (II) and (III), the I···O distance decreases to 2.802 (6) and 2.767 (2) Å for (II) and (III), respectively. However, this shortening is not observed in the second dimer of each. Consequently, this variation is also likely to be simply a manifestation of crystal-packing forces. The sum of the covalent radii of I and O is 2.08 Å and the sum of their van der Waals radii is 3.45 Å (Huheey *et al.*, 1993).

Experimental

The three title complexes were prepared as previously described by Hinkle *et al.* (1999) and were crystallized from CH_2Cl_2 solutions layered with pentane in 1 dram vials. These vials were kept at 258 K for 24–72 h before the solvent was decanted.

Compound (I)

Crystal data

 $\begin{array}{l} C_{12}H_{13}F_{3}I^{+}\cdot CF_{3}O_{3}S^{-}\\ M_{r}=490.19\\ \text{Monoclinic, }P2_{1}/n\\ a=6.5676\ (7)\ \text{\AA}\\ b=17.2459\ (18)\ \text{\AA}\\ c=15.7394\ (16)\ \text{\AA}\\ \beta=96.803\ (10)^{\circ}\\ V=1770.2\ (3)\ \text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

Bruker P4/RA/SMART 1000 CCD area-detector diffractometer φ and ω scans Absorption correction: empirical (*SADABS*; Sheldrick, 1996) $T_{min} = 0.601, T_{max} = 0.772$ 8591 measured reflections 3622 independent reflections 2912 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation Cell parameters from 5559 reflections $\theta = 2.4-26.4^{\circ}$ $\mu = 1.99 \text{ mm}^{-1}$ T = 193 (2) K Prism, colorless $0.33 \times 0.22 \times 0.13 \text{ mm}$

 $D_{\rm r} = 1.839 {\rm Mg m}^{-3}$

 $\begin{aligned} R_{\text{int}} &= 0.028\\ \theta_{\text{max}} &= 26.4^{\circ}\\ h &= -8 \rightarrow 3\\ k &= -21 \rightarrow 21\\ l &= -19 \rightarrow 18\\ 169 \text{ standard reflections}\\ \text{frequency: 1110 min}\\ \text{intensity decay: <1\%} \end{aligned}$

Table 1

Selected geometric parameters (Å, °) for (I).

I-C1	2.086 (6)	C4-C5B	1.39 (2)
I-01	2.909 (6)	S-O1	1.391 (5)
I-O2 ⁱ	2.991 (8)	S-O2	1.403 (6)
I-C11	2.106 (6)	S-O3	1.405 (6)
C1-C2	1.319 (8)	S-C20	1.794 (9)
C2-C3	1.502 (9)	F4-C20	1.321 (11)
C2-C4	1.503 (10)	F5-C20	1.378 (14)
C4-C5A	1.429 (16)	F6-C20	1.268 (10)
$O1-I-O2^{i}$	105.86 (19)	O1 - S - O2	110.9 (5)
O1-I-C1	171.2 (2)	O1-S-O3	122.4 (5)
O1-I-C11	76.64 (18)	O2-S-O3	109.6 (5)
$O2^{i}-I-C1$	82.9 (2)	O1-S-C20	104.2 (4)
$O2^{i}-I-C11$	168.2 (2)	O2-S-C20	102.9 (6)
C1-I-C11	94.9 (2)	O3-S-C20	104.7 (4)
I - C1 - C2	124.2 (5)	I-O1-S	114.7 (3)
C1-C2-C3	117.4 (6)	S-C20-F4	112.4 (7)
C1-C2-C4	126.0 (6)	S-C20-F5	109.0 (8)
C3-C2-C4	116.6 (6)	S-C20-F6	115.5 (7)
C2-C4-C5A	115.3 (9)	F4-C20-F5	106.4 (9)
C2-C4-C5B	120.4 (12)	F4-C20-F6	109.7 (9)
I-C11-C12	118.3 (4)	F5-C20-F6	103.0 (9)
I-C11-C16	120.2 (4)		
	. ,		

Symmetry code: (i) -x, -y, 1-z.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.144$ S = 1.04 3622 reflections 256 parameters H-atom parameters constrained

Compound (II)

Crystal data

 $\begin{array}{l} C_{11}H_{12}Cl_{2}I^{+}\cdot CF_{3}O_{3}S^{-}\\ M_{r}=491.08\\ \text{Triclinic, }P\overline{I}\\ a=9.1705\ (10)\ \text{\AA}\\ b=13.4357\ (15)\ \text{\AA}\\ c=15.6030\ (17)\ \text{\AA}\\ \alpha=69.245\ (10)^{\circ}\\ \beta=88.342\ (10)^{\circ}\\ \gamma=74.358\ (10)^{\circ}\\ V=1726.4\ (3)\ \text{\AA}^{3} \end{array}$

Data collection

```
Bruker PLATFORM/SMART
1000 CCD area-detector
diffractometer
ω scans
Absorption correction: by integra-
tion (SHELXTL; Sheldrick,
1997a)
T<sub>min</sub> = 0.559, T<sub>max</sub> = 0.922
8587 measured reflections
6950 independent reflections
```

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.152$ S = 0.966950 reflections 399 parameters
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0793P)^2 \\ &+ 3.5701P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 1.40 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -1.16 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Z = 4 $D_x = 1.889 \text{ Mg m}^{-3}$ Mo $\kappa \alpha$ radiation Cell parameters from 4172 reflections $\theta = 2.6-26.4^{\circ}$ $\mu = 2.32 \text{ mm}^{-1}$ T = 193 (2) K Prism, colorless $0.49 \times 0.07 \times 0.04 \text{ mm}$

4412 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 26.5^{\circ}$ $h = -10 \rightarrow 11$ $k = -16 \rightarrow 14$ $l = -19 \rightarrow 10$ 3 standard reflections frequency: 960 min intensity decay: <1%

 $\begin{array}{l} \mbox{H-atom parameters constrained} \\ w = 1/[\sigma^2(F_o^2) + (0.0846P)^2] \\ \mbox{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 2.07 \mbox{ e } \mbox{Å}^{-3} \\ \Delta\rho_{\rm min} = -1.21 \mbox{ e } \mbox{Å}^{-3} \end{array}$

Table 2

Selected geometric parameters (Å, °) for (II).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1-01	2.848 (6)	C9-C10	1.510 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1–O2 ⁱ	2.802 (6)	S1-O1	1.432 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1-C1	2.106 (8)	S1-O2	1.436 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1-C11	2.119 (8)	S1-O3	1.426 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2	1.297 (11)	S1-C30	1.819 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C3	1.525 (11)	F1-C30	1.330 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C4	1.503 (11)	F2-C30	1.345 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C5	1.520 (13)	F3-C30	1.299 (13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I2-O4	2.832 (6)	S2-O4	1.431 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I2-O5 ⁱⁱ	2.850 (6)	S2-O5	1.443 (6)
$12-C21$ 2.127 (8) $S2-C40$ 1.822 (10) $C6-C7$ 1.313 (12) $F4-C40$ 1.319 (11) $C7-C8$ 1.524 (12) $F5-C40$ 1.327 (11) $C7-C9$ 1.492 (12) $F6-C40$ 1.349 (11) $C7-C9$ 1.492 (12) $F6-C40$ 1.349 (11) $O1-11-C1$ 14.5 (4) $01-S1-O3$ 115.2 (4) $O1-11-C1$ 80.9 (3) $O2-S1-O3$ 115.3 (4) $O2'-11-C1$ 87.1 (3) $O1-S1-C30$ 102.4 (5) $O2'-11-C1$ 179.0 (3) $O2-S1-C30$ 102.5 (4) $C1-11-C1$ 93.5 (3) $O3-S1-C30$ 102.5 (4) $C1-11-C1$ 179.0 (3) $O2-S1-C30$ 102.5 (4) $C1-C2-C3$ 117.2 (8) $S1-C30-F1$ 111.1 (8) $C1-C2-C4$ 127.0 (8) $S1-C30-F2$ 107.1 (9) $11-C11-C12$ 119.1 (6) $F1-C30-F3$ 112.8 (8) $C2-C4-C5$ 113.5 (8) $F1-C30-F3$ 107.3 (9) $11-C11-C12$ 119.1 (6) $F1-C30-F3$ 108.1 (9) $O4-12-O5^{ii}$ <td>I2-C6</td> <td>2.098 (8)</td> <td>S2-O6</td> <td>1.430 (6)</td>	I2-C6	2.098 (8)	S2-O6	1.430 (6)
C6-C7 1.313 (12) F4-C40 1.319 (11) C7-C8 1.524 (12) F5-C40 1.327 (11) C7-C9 1.492 (12) F6-C40 1.349 (11) O1-I1-C1 173.8 (3) O1-S1-O2 114.5 (4) O1-I1-C1 173.8 (3) O2-S1-O3 115.2 (4) O2'-I1-C1 87.1 (3) O2-S1-C30 102.4 (5) O2'-I1-C1 179.0 (3) O2-S1-C30 102.5 (4) C1-I1-C11 199.0 (3) O2-S1-C30 102.4 (5) O2'-I1-C11 179.0 (3) O2-S1-C30 102.5 (4) C1-I1-C12 122.6 (6) I1-O1-S1 151.5 (4) C1-C2-C3 117.2 (8) S1-C30-F1 111.1 (8) C1-C2-C4 127.0 (8) S1-C30-F2 110.1 (7) C3-C2-C4 115.8 (7) S1-C30-F3 112.8 (8) C2-C4-C5 113.5 (8) F1-C30-F3 107.3 (9) I1-C11-C12 19.1 (6) F1-C30-F3 107.3 (9) I1-C11-C12 19.1 (6) F1-C30-F3 108.1 (9) O4-I2-C6 174.1 (3) O4-S2-C40 102.9 (4) O5 ⁱⁱ -12-C21 <td>I2-C21</td> <td>2.127 (8)</td> <td>S2-C40</td> <td>1.822 (10)</td>	I2-C21	2.127 (8)	S2-C40	1.822 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C7	1.313 (12)	F4-C40	1.319 (11)
C7-C9 $1.492 (12)$ F6-C40 $1.349 (11)$ O1-I1-O2i98.49 (18)O1-S1-O2 $114.5 (4)$ O1-I1-C1173.8 (3)O1-S1-O3 $115.2 (4)$ O1-I1-C180.9 (3)O2-S1-O3 $115.3 (4)$ O2i-I1-C187.1 (3)O1-S1-C30 $102.4 (5)$ O2i-I1-C1179.0 (3)O2-S1-C30 $102.5 (4)$ C1-I1-C1193.5 (3)O3-S1-C30 $104.5 (5)$ I1-C1-C2122.6 (6)I1-O1-S1 $151.5 (4)$ C1-C2-C3117.2 (8)S1-C30-F1 $111.1 (8)$ C1-C2-C4127.0 (8)S1-C30-F2 $110.1 (7)$ C3-C2-C4113.5 (8)F1-C30-F3 $107.3 (9)$ I1-C11-C12119.1 (6)F1-C30-F3 $107.3 (9)$ I1-C11-C16117.6 (6)F2-C30-F3 $108.1 (9)$ O4-I2-O5 ⁱⁱ 98.26 (18)O4-S2-O5 $114.8 (4)$ O4-I2-C6174.1 (3)O4-S2-O6 $115.3 (4)$ O4-I2-C2180.6 (3)O5-S2-C40 $102.9 (4)$ O5 ⁱⁱ -I2-C2193.7 (3)O6-S2-C40 $102.6 (4)$ C6-C7-C8118.0 (8)S2-C40-F5 $111.3 (7)$ C8-C7-C9127.0 (8)S2-C40-F5 $111.3 (7)$ C8-C7-C9127.0 (8)S2-C40-F5 $111.1 (7)$ C7-C9-C10112.9 (8)F4-C40-F5 $108.8 (8)$ I2-C21-C22188.0 (6)F4-C40-F6 $106.7 (8)$	C7-C8	1.524 (12)	F5-C40	1.327 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C9	1.492 (12)	F6-C40	1.349 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O1 - I1 - O2^{i}$	98.49 (18)	O1-S1-O2	114.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1-I1-C1	173.8 (3)	O1-S1-O3	115.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1-I1-C11	80.9 (3)	O2 - S1 - O3	115.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O2^{i}-I1-C1$	87.1 (3)	O1-S1-C30	102.4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O2^{i}-I1-C11$	179.0 (3)	O2 - S1 - C30	102.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-I1-C11	93.5 (3)	O3-S1-C30	104.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1 - C1 - C2	122.6 (6)	I1-01-S1	151.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-C3	117.2 (8)	S1-C30-F1	111.1 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-C4	127.0 (8)	S1-C30-F2	110.1 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C2-C4	115.8 (7)	S1-C30-F3	112.8 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C4-C5	113.5 (8)	F1-C30-F2	107.1 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1-C11-C12	119.1 (6)	F1-C30-F3	107.3 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1-C11-C16	117.6 (6)	F2-C30-F3	108.1 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O4 - I2 - O5^{ii}$	98.26 (18)	O4-S2-O5	114.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4-I2-C6	174.1 (3)	O4 - S2 - O6	115.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4-I2-C21	80.6 (3)	O4-S2-C40	102.9 (4)
$O5^{ii} - I2 - C21$ 178.6 (3) $O5 - S2 - C40$ 102.6 (4) $C6 - I2 - C21$ 93.7 (3) $O6 - S2 - C40$ 103.8 (4) $I2 - C6 - C7$ 122.7 (7) $I2 - O4 - S2$ 154.4 (4) $C6 - C7 - C8$ 118.0 (8) $S2 - C40 - F4$ 112.4 (7) $C6 - C7 - C9$ 127.0 (8) $S2 - C40 - F5$ 111.3 (7) $C8 - C7 - C9$ 114.9 (8) $S2 - C40 - F6$ 111.1 (7) $C7 - C9 - C10$ 112.9 (8) $F4 - C40 - F5$ 108.8 (8) $I2 - C21 - C22$ 118.0 (6) $F4 - C40 - F6$ 106.7 (8)	$O5^{ii}$ -I2-C6	87.4 (3)	05 - S2 - 06	115.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O5^{ii}$ -I2-C21	178.6 (3)	O5-S2-C40	102.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-I2-C21	93.7 (3)	O6-S2-C40	103.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I2-C6-C7	122.7 (7)	I2 - O4 - S2	154.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C7-C8	118.0 (8)	S2-C40-F4	112.4 (7)
C8-C7-C9 114.9 (8) $S2-C40-F6$ 111.1 (7) $C7-C9-C10$ 112.9 (8) $F4-C40-F5$ 108.8 (8) $12-C21-C22$ 118.0 (6) $F4-C40-F6$ 106.7 (8)	C6-C7-C9	127.0 (8)	S2-C40-F5	111.3 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-C7-C9	114.9 (8)	S2-C40-F6	111.1 (7)
I2-C21-C22 118.0 (6) $F4-C40-F6$ 106.7 (8)	C7-C9-C10	112.9 (8)	F4-C40-F5	108.8 (8)
	I2-C21-C22	118.0 (6)	F4-C40-F6	106.7 (8)
12-C21-C26 117.7 (6) $F5-C40-F6$ 106.3 (8)	I2 - C21 - C26	117.7 (6)	F5-C40-F6	106.3 (8)

Symmetry codes: (i) -x, -y, -z; (ii) 1 - x, -y, 1 - z.

Compound (III)

Crystal data

$2C_{13}H_{12}F_6I^+ \cdot 2CF_3O_3S^- \cdot CH_2Cl_2$
$M_r = 1201.32$
Triclinic, $P\overline{1}$
a = 12.5807 (13) Å
b = 13.2381 (14) Å
c = 13.6567 (14) Å
$\alpha = 81.854 \ (10)^{\circ}$
$\beta = 72.429 \ (10)^{\circ}$
$\gamma = 79.851 \ (10)^{\circ}$
$V = 2124.9 (4) \text{ Å}^3$

Data collection

Bruker <i>P</i> 4/RA/SMART 1000 CCD area-detector diffractometer	6911 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$
φ and ω scans	$\theta_{\rm max} = 26.4^{\circ}$
Absorption correction: by integra-	$h = -13 \rightarrow 15$
tion (SHELXTL; Sheldrick,	$k = -13 \rightarrow 16$
1997 <i>a</i>)	$l = -17 \rightarrow 17$
$T_{\min} = 0.629, T_{\max} = 0.857$	185 standard reflections
12 749 measured reflections	frequency: 1470 min
8628 independent reflections	intensity decay: <1%

Z = 2

 $D_x = 1.878 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 8192

reflections

 $\mu = 1.82 \text{ mm}^{-1}$ T = 193 (2) KPrism, colorless $0.39 \times 0.17 \times 0.12 \text{ mm}$

 $\theta = 2.3 - 26.3^{\circ}$

Table	3			
-------	---	--	--	--

Selected geometric parameters (Å, °) for (III).

I1-O31	2.767 (2)	C9A - C10A	1.481 (11)
$I1 - O32^{i}$	2.985 (3)	C9B-C10B	1.54 (2)
I1-C1	2.093 (3)	S1-O31	1.441 (2)
I1-C11	2.111 (3)	S1-O32	1.443 (2)
C1-C2	1.326 (5)	S1-O33	1.426 (3)
C2 - C3	1.508 (5)	S1-C30	1.815 (4)
C2 - C4	1.504 (6)	F31-C30	1.333 (4)
C4-C5	1.524 (6)	F32-C30	1.319 (4)
I2-O41	2.881(2)	F33-C30	1.318 (5)
$I2 - O42^{ii}$	2.893 (3)	S2-O41	1.443 (2)
I2-C6	2.094 (3)	S2-O42	1.442 (3)
I2-C21	2.104 (3)	S2-O43	1.435 (3)
C6-C7	1.293 (5)	S2-C40	1.812 (4)
C7-C8	1.500 (5)	F41-C40	1.334 (5)
C7-C9A	1.559 (9)	F42-C40	1.319 (5)
C7-C9B	1.512 (15)	F43-C40	1.319 (5)
	. ,		. ,
021 II 022 ⁱ	115.02 (7)	12 (21 (2))	110 4 (2)
031 - 11 - 032	115.02(7)	12 - C21 - C26	119.4 (2)
031 - 11 - 011	170.40 (10)	031 - 51 - 032	113.82 (15)
031 - 11 - 011	170.49 (10)	031 - 51 - 033	114./1 (10)
0.32 - 11 - 0.11	109.94 (10)	031 - 51 - 032	104.05 (17)
0.52 - 11 - 0.11	74.41 (10)	032 - 51 - 033	115.51 (17)
1 - 11 - 01	95.52(12)	032 - 51 - 030	103.24 (10)
11 - C1 - C2	125.0(5)	033 - 31 - 030	105.07 (19)
C1 - C2 - C3	117.7(4) 125.0(2)	11-031-31 \$1 C20 E21	120.92 (14)
C1 - C2 - C4	125.9 (3)	S1 - C30 - F31 S1 - C20 - F22	110.3(3) 111.5(2)
$C_{2} = C_{2} = C_{4}$	110.4(5) 112.0(4)	S1 - C30 - F32 S1 - C20 - F32	111.3(3) 111.2(2)
11 - C11 - C12	113.0(4) 118.6(2)	S1 - C30 - F33 E21 C20 E22	111.3(3) 1085(2)
11 - C11 - C12	118.0(2)	$F_{51} = C_{50} = F_{52}$	106.3(3) 106.8(2)
11 - C11 - C10	118.7(2) 106.24(7)	F31-C30-F35	100.8(3) 108.2(2)
041 - 12 - 042	100.24(7)	F32-C30-F33	108.3(3) 112.59(15)
041 - 12 - 00	172.38 (10)	041 - 52 - 042	115.36 (13)
041 - 12 - 021 042^{ii} 12 06	78.75 (10) 80.17 (11)	041 - 52 - 043 041 - 52 - 043	115.55 (17)
042 - 12 - 00 $042^{ii} - 12 - 021$	00.17 (11) 174.60 (10)	041 - 32 - 040	105.44 (16)
042 - 12 - 021	1/4.09(10) 04.00(12)	042 - 32 - 043	113.20 (17)
12 - 12 - 021	124.99(13)	042 - 32 - 040 042 - 52 - 040	103.00 (18)
12 - C0 - C7	124.9(3)	043 - 32 - 040	105.80 (19)
$C_{0} = C_{7} = C_{0}$	116.2(4) 125.2(4)	12 - 041 - 32	149.20(10) 110.0(2)
C6 C7 C0P	123.2 (4)	52 - C40 - F41 52 - C40 - F42	110.0(3)
$C_{0} = C_{1} = C_{9}B$	119.7(0) 115.1(4)	52 - C40 - F42 52 - C40 - F42	111.4(3) 111.2(2)
$C_{8} = C_{7} = C_{9A}$	113.1(4) 112.7(6)	52 - C40 - F45 F41 - C40 - F42	111.3(3) 107.8(4)
$C_{7} = C_{7} = C_{9} D$	113.7(0) 110.0(8)	$\Gamma_{41} = C_{40} = \Gamma_{42}$	107.0(4) 107.8(4)
$C_7 = C_9A = C_{10}A$	110.9(0) 102.5(15)	$F_{41} = C_{40} = F_{43}$ $F_{42} = C_{40} = F_{42}$	107.0(4) 108.4(4)
$12 - C^{2} -$	102.5(13) 1186(2)	1 72 - 040 - 145	100.4 (4)
	110.0141		

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, -z.

Refinement H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.032$ $w = 1/[\sigma^2(F_o^2) + (0.0417P)^2]$ $wR(F^2) = 0.078$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.97 $(\Delta/\sigma)_{max} = 0.002$ 8628 reflections $\Delta\rho_{max} = 0.49$ e Å⁻³ 618 parameters $\Delta\rho_{min} = -0.64$ e Å⁻³

H atoms were treated as riding, with C–H = 0.95–0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. For (I), the CF₃ group was found to be rotationally disordered. Thus, two sets of three F atoms each (with occupancy factors of 60% for F1*A*, F2*A* and F3*A*, and 40% for F1*B*, F2*B* and F3*B*) were refined. For this compound, the terminal C atom of the 2-methyl-1-butenyl group was determined to be disordered over two positions (C5*A* 55% and C5*B* 45%). The largest residual peaks of electron density (1.40 and -1.16 e Å^{-3}) were found within 0.81 Å of the I atom. For (II), the largest residual peaks of electron density (2.07 and -1.21 e Å^{-3}) were found within 0.94 Å of one of the I atoms (I1). For (III), one of the CF₃ groups on the phenyl ring

attached to I1 was found to be rotationally disordered. Thus, two sets of three F atoms each (with occupancy factors of 70% for F11*A*, F12*A* and F13*A*, and 30% for F11*B*, F12*B* and F13*B*) were refined. Also for (III), both of the CF₃ groups on the phenyl ring attached to I2 displayed a rotational disorder, such that each was refined with two sets of three F atoms (F21*A*, F22*A* and F23*A*, and F21*B*, F22*B* and F23*B* attached to C27, and F24*A*, F25*A* and F26*A*, and F24*B*, F25*B* and F26*B* attached to C28), each set with an occupancy factor of 50%. For (III), the two terminal butenyl C atoms of the 2-methyl-1-butenyl group attached to I2 were refined as two sets of positions (C9*A* and C10*A* at 66.67% occupancy, and C9*B* and C10*B* at 33.33% occupancy). The largest residual peaks of electron density (0.49 and $-0.64 \text{ e } \text{Å}^{-3}$) were found within 1.06 Å of one of the CI atoms (Cl2*S*) of the dichloromethane molecule.

For all three compounds, data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SHELXTL* (Sheldrick, 1997*a*). For compounds (I) and (III), program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); for compound (II), program(s) used to solve structure: *DIRDIF*96 (Beurskens *et al.*, 1996). For all three compounds, program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*b*); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are indebted to the Research Corporation (grant No. CC4659), the National Science Foundation (CAREER, grant No. CHE-9983863) and the College of William and Mary for support of this work. The diffractometers were purchased with the generous support of the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1616). Services for accessing these data are described at the back of the journal.

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1996). *The DIRDIF96 Program System*. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Bruker (1997). SMART. Version 5.00. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gately, D. A., Luther, T. A., Norton, J. R., Miller, M. M. & Anderson, O. P. (1992). J. Org. Chem. 57, 6496–6502.
- Hinkle, R. J., McNeil, A. J., Thomas, Q. A. & Andrews, M. N. (1999). J. Am. Chem. Soc. 121, 7437–7438.
- Hinkle, R. J. & Thomas, D. B. (1997). J. Org. Chem. 62, 7534-7535.
- Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). *Principles of Structure*, pp. 292 and A32. New York: HarperCollins.
- Kasumov, T. M., Brel', V. K., Potekhin, K. A., Balashova, E. V. & Zefirov, N. S. (1996). Dokl. Chem. 351, 644–648.
- Kasumov, T. M., Brel', V. K., Potekhin, K. A., Balashova, E. V., Zefirov, N. S. & Stang, P. J. (1997). Dokl. Chem. 353, 770–773.
- Lowry, T. H. & Richardson, K. S. (1987). Mechanism and Theory in Organic Chemistry, 3rd ed., pp. 143–152. New York: Harper.
- McNeil, A. M., Hinkle, R. J., Rouse, E. A., Thomas, Q. A. & Thomas, D. B. (2001). J. Org. Chem. 66, 5556–5565.
- Okuyama, T., Imamura, S. & Ishida, Y. (2001). Bull. Chem. Soc. Jpn, 74, 543–548.
- Okuyama, T., Takino, T., Sato, K. & Ochiai, M. (1998). J. Am. Chem. Soc. 120, 2275–2282.
- Okuyama, T., Takino, T., Sueda, T. & Ochiai, M. (1995). J. Am. Chem. Soc. 117, 3360–3367.
- Perkins, C. W., Martin, J. C., Arduengo, A. J., Lau, W., Alegria, A. & Kochi, J. K. (1980). J. Am. Chem. Soc. 102, 7753–7759.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.
- Stang, P. J. & Zhdankin, V. V. (1996). Chem. Rev. 96, 1123-1178.
- Tykwinski, R. R., Kamada, K., Bykowski, D., Ohta, K. & McDonald, R. (2000). *Adv. Mater.* **12**, 133–137.
- Varvoglis, A. (1992). *The Organic Chemistry of Polycoordinated Iodine*, pp. 209–211. New York: VCH.
- Zhdankin, V. V., Scheuller, M. C. & Stang, P. J. (1993). Tetrahedron Lett. 34, 6853–6856.